k-Anonymity: A Model for Protecting Privacy

نویسنده

  • Latanya Sweeney
چکیده

Consider a data holder, such as a hospital or a bank, that has a privately held collection of person-specific, field structured data. Suppose the data holder wants to share a version of the data with researchers. How can a data holder release a version of its private data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data remain practically useful? The solution provided in this paper includes a formal protection model named k-anonymity and a set of accompanying policies for deployment. A release provides k-anonymity protection if the information for each person contained in the release cannot be distinguished from at least k-1 individuals whose information also appears in the release. This paper also examines re-identification attacks that can be realized on releases that adhere to kanonymity unless accompanying policies are respected. The k-anonymity protection model is important because it forms the basis on which the real-world systems known as Datafly, μ-Argus and k-Similar provide guarantees of privacy protection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-Sensitive K-Anonymity with Generalization Constraints

Numerous privacy models based on the k‐anonymity property and extending the k‐anonymity model have been introduced in the last few years in data privacy re‐ search: l‐diversity, p‐sensitive k‐anonymity, (α, k) – anonymity, t‐closeness, etc. While differing in their methods and quality of their results, they all focus first on masking the data, and then protecting the quality of the data as a wh...

متن کامل

Quality Aware Privacy Protection for Location-Based Services

Protection of users’ privacy has been a central issue for location-based services (LBSs). In this paper, we classify two kinds of privacy protection requirements in LBS: location anonymity and identifier anonymity. While the location cloaking technique under the k-anonymity model can provide a good protection of users’ privacy, it reduces the resolution of location information and, hence, may d...

متن کامل

A Customizable k-Anonymity Model for Protecting Location Privacy

Continued advances in mobile networks and positioning technologies have created a strong market push for location-based services (LBSs). Examples include location-aware emergency services, location based service advertisement, and location sensitive billing. One of the big challenges in wide deployment of LBS systems is the privacy-preserving management of location-based data. Without safeguard...

متن کامل

(α, k)-Anonymity: An Enhanced k-Anonymity Model for Privacy-Preserving Data Publishing

Privacy preservation is an important issue in the release of data for mining purposes. The k-anonymity model has been introduced for protecting individual identification. Recent studies show that a more sophisticated model is necessary to protect the association of individuals to sensitive information. In this paper, we propose an (α, k)-anonymity model to protect both identifications and relat...

متن کامل

Current Developments of k-Anonymous Data Releasing

Disclosure-control is a traditional statistical methodology for protecting privacy when data is released for analysis. Disclosure-control methods have enjoyed a revival in the data mining community, especially after the introduction of the k-anonymity model by Samarati and Sweeney. Algorithmic advances on k-anonymisation provide simple and effective approaches to protect private information of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2002